

STFH10N60M2

N-channel 600 V, 0.55 Ω typ., 7.5 A MDmesh™ M2 Power MOSFET in a TO-220FP wide creepage package

Datasheet - production data

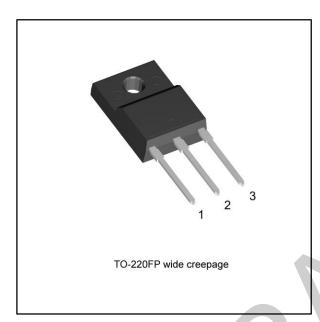
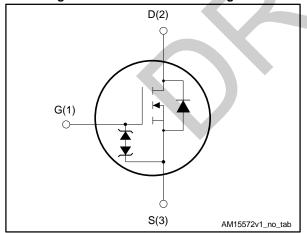



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} @ T _{Jmax}	R _{DS(on)} max	ID
STFH10N60M2	650 V	0.60 Ω	7.5 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected
- Wide creepage distance of 4.25 mm between the pins

Applications

- Switching applications
- LLC converters, resonant converters

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

The TO-220FP wide creepage package provides increased surface insulation for Power MOSFETs to prevent failure due to arcing, which can occur in polluted environments.

Table 1: Device summary

Order code	Marking	Package	Packing
STFH10N60M2	10N60M2	TO-220FP wide creepage	Tube

STFH10N60M2

Contents Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP wide creepage package information	9
5	Revisio	n history	11

STFH10N60M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	7.5 ⁽¹⁾	Α
ID	Drain current (continuous) at T _C = 100 °C	4.9 ⁽¹⁾	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	30 ⁽¹⁾	Α
P _{TOT}	Total dissipation at $T_C = 25$ °C	25	W
dv/dt (3)	Peak diode recovery voltage slope	15	V/ns
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_C = 25 °C)	2500	٧
T _{stg}	Storage temperature range	FF to 150	°C
Tj	Operating junction temperature range	- 55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	2.5	А
Eas	Single pulse avalanche energy (starting T_j =25 °C, I_D = I_{AR} ; V_{DD} =50 V)	110	mJ

⁽¹⁾Limited by maximum junction temperature.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}I_{SD} \leq 7.5$ A, di/dt ≤ 400 A/µs; VDSpeak < V(BR)DSS, VDD = 400 V

 $^{^{(4)}}V_{DS} \le 480 \text{ V}$

Electrical characteristics STFH10N60M2

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 5: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0, I_{D} = 1 \text{ mA}$	600			V
		V _{GS} = 0, V _{DS} = 600 V			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0,$ $V_{DS} = 600 \text{ V},$ $T_{C}=125 \text{ °C} $ ⁽¹⁾			100	μΑ
Igss	Gate-body leakage current	$V_{DS} = 0$, $V_{GS} = \pm 25 \text{ V}$			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, I_{D} = 3 \text{ A}$		0.55	0.60	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance	V _{DS} = 100 V,	1	400	-	pF
Coss	Output capacitance	f = 1 MHz,	-	22	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 V$	-	0.84	-	pF
Coss	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	83	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	ı	6.4	-	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 7.5 \text{ A},$	ı	13.5	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	ı	2.1	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	,	7.2	-	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 3.75 A,	-	8.8	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	8	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching times" and Figure 19: "Switching time waveform")	1	32.5	ı	ns
t _f	Fall time	Sincing and navolonny	-	13.2	1	ns

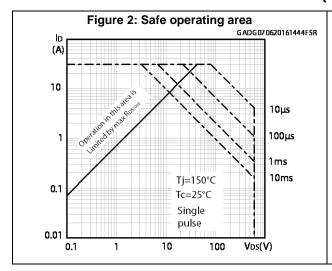
 $^{^{(1)}}$ Defined by design, not subject to production test.

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		1		7.5	Α
I _{SDM} ⁽¹⁾⁽²⁾	Source-drain current (pulsed)		1		30	Α
V _{SD} ⁽³⁾	Forward on voltage	I _{SD} = 7.5 A, V _{GS} = 0 V	1		1.6	٧
t _{rr}	Reverse recovery time	I _{SD} = 7.5 A, di/dt = 100 A/µs	1	270		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load switching and diode recovery times")	ı	2		μC
I _{RRM}	Reverse recovery current		-	14.4		Α
t _{rr}	Reverse recovery time	I _{SD} = 7.5 A, di/dt = 100 A/μs	-	376		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (see Figure 16: "Test circuit for inductive	-	2.8		μC
I _{RRM}	Reverse recovery current	load switching and diode recovery times")		15		Α

Notes:



 $^{^{(1)}}$ Limited by maximum junction temperature.

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%.

2.2 Electrical characteristics (curves)

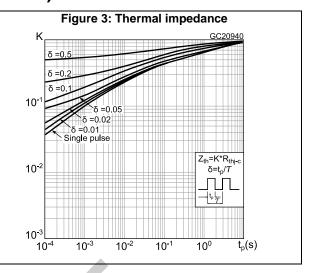


Figure 4: Output characteristics

GADG070620161446FSR

VGS=7, 8, 9, 10V

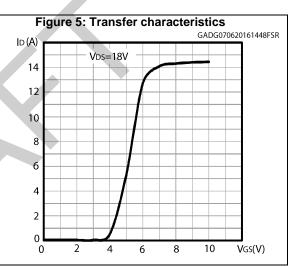
14

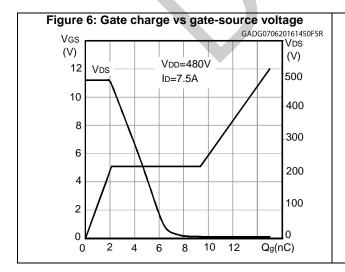
12

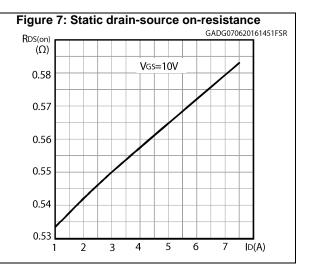
10

8

6


4


2


0

5

VDS(V)

STFH10N60M2 Electrical characteristics

Figure 8: Capacitance variations

C (pF)

1000

10

Coss

Coss

Coss

Crss

O.1

O.1

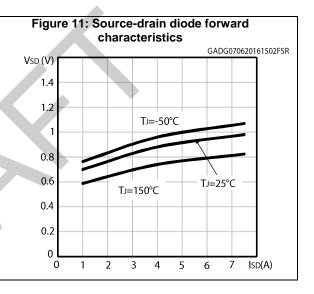
1 10 100 VDs(V)

Figure 9: Normalized gate threshold voltage vs. temperature

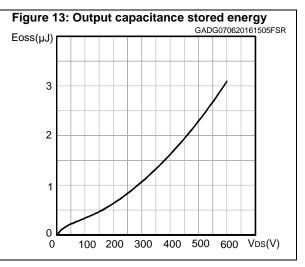
VGS(th)
(norm)

1.1

1.0


0.9


0.8

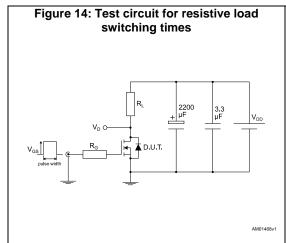

0.7

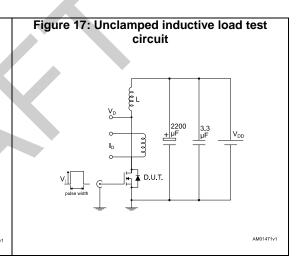
-50 -25 0 25 50 75 100 125 ΤJ(°C)

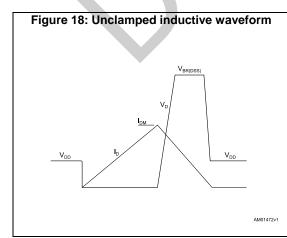
Figure 10: Normalized on-resistance vs temperature GADG070620161500FSR RDS(on) (norm) 2.5 ID=3 A 2.3 2.1 1.9 1.7 1.5 1.3 1.1 0.9 0.7 -25 25 50 100 125 TJ(°C)

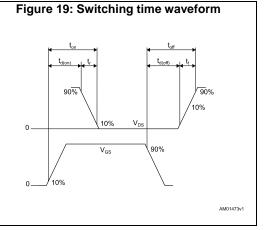
Test circuits STFH10N60M2

3 Test circuits




Figure 15: Test circuit for gate charge behavior


12 V 47 kΩ 100 nF D.U.T.


2200 PF 47 kΩ 0 VG

AM01469v1

Figure 16: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP wide creepage package information

57 D 14 G1 G Ε

Figure 20: TO-220FP wide creepage package outline

Table 9: TO-220FP wide creepage package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.60	4.70	4.80
В	2.50	2.60	2.70
D	2.49	2.59	2.69
E	0.46		0.59
F	0.76		0.89
F1	0.96		1.25
F2	1.11		1.40
G	8.40	8.50	8.60
G1	4.15	4.25	4.35
Н	10.90	11.00	11.10
L2	15.25	15.40	15.55
L3	28.70	29.00	29.30
L4	10.00	10.20	10.40
L5	2.55	2.70	2.85
L6	16.00	16.10	16.20
L7	9.05	9.15	9.25
Dia	3.00	3.10	3.20

STFH10N60M2 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
07-Jun-2016	1	First release.
16-Jun-2016	2	Document status promoted from preliminary data to production data. Minor text changes.
18-Aug-2016	3	Modified: title and R _{DS(on)} in cover page Modified: <i>Table 5: "On /off states"</i> and <i>Table 7: "Switching times"</i> Minor text changes

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

